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1. Introduction and review

How to evaluate from observations, all subject to error, an estimate
of a functional relation has been a persistent statistical problem for 80
years, ‘“hen the relation is linear, when errors of observation are normally
distributed, and when either nothing is postulated about distribution of the
underlying hypothetical variables or they are assumed to be also normally
distributed random variables, a consistent solution is possible only if the
ratios of variances and covariances of the errors are known (or alternatively
all but one of the second moment parameters of the error distributions). We
shall consider here a linear relation between two variates with homogeneous
error variances. Usually one assumes the covariance to be zero and the
ratio of variances known. With that condition the solution was given by
Kummell in 1879 and has been several times rediscovered., Nevertheless the
theoretical foundation for Kummell's solution has remained ambiguous; it is
known to be consistent, but beyond that its statistical properties such as
bias and efficiency have not been investigated. Miss Dent (1935) seems to
have been the only writer to attempt to evaluate the sampling variance of the
estimated slope and her solution is far from satisfactory. It ignores dis=-
tinction between parameters and statistics, it is based on a Taylor expansion
which is not always convergent, and as it seeks the variance of tan (28) it
degenerates toward infinity in the most important region where the slope,
tan B, is near unity,

The purpose of this paper is to show why Kummell's solution is unique;
thence to prove that it is efficient and unbiased, with respect to the angle

of the line with either coordinate axisy and to obtain its sampling distri-

bution.
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Consider the following model. Two variables, 71 and oy are linearly
related:

)71 =4+ B, (1)

or "y €05 B =1, Sinf = =0 ()

Experimentation yields paired observations

Ypi © Vpi * 5pi

p=1,2; i=1,.een

The errors of observation, &, 6y, are assumed to be random variables
normally independently distributed with zero means and common variance oﬁ.
Except where otherwise stated nothing is postulated about the distribution
of Ny (or equivalently, owing to the relation (1), of 72). The model is
illustrated in fig. 1 where circles represent equal frequency contours of
the aistribution of Gp. In particular we will consider the circles with
radius equal to Ty Only two sub=-populations are shown in the figure although
usually n would be substantially greater than two. The relationship (1) is
represented by the line AA'.

We shall consider also the more general model where errors of observations
are not independently distributed with equal variances. let the observations
then be denoted ipi’ and assume them to be normally distributed with variances

%15 T and covariance 95 around centers gpi which obey the relation
& t 1
S =4 +B 5 ()

This model is diagrammed in fig. 2., We consider in particular the contour

ellipse

2 2 2
Opply = 201566y + 0196y = 010y =0y (4)
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where ep = xp - gp' The length of any radius of this ellipse is the
standard deviation of any section of the bivariate frequency distribution
in the same direction; and the projection of the ellipse on any line is
the standard deviation of the marginal distribution of the sub=population
projected onto that line.

Provided we know either two of the quantities ObQ’ or two ratios among

them, this model can be transformed to the previous one by
L L R 5

Yo = byxy + byxy

subject to
a20 + 2a.a,0., + azo = bao + 2b.b,.o 2
1711 12712 2722 1711 172712 + b2022

+ a.b.0

81010y + (310, +ab)oy, +asby0p, |

1"1711

a transformation which can be made in many ways. All deductions about the
"y" model can be transferred to the "x" model by the transformation.
Efforts to find a means of estimating the functional relation (1) or
(3), under conditions stated, have followed one of three lines, namely:
I by considering criteria of consistency, II least squares, III maximum
likelihood, (We exclude from consideration here estimates from moments of
higher than second order which become available when 3 is postulated to have
a non-normal frequency distribution.) The following review quotes only a
few of the papers on the topic to indicate salient features of the literature.
I: Criteria of consistency are exemplified by the proposals of Gini (1921),
Seares (1944, 1945) and Hald (1952). Usually this method seeks to apply an

adjustment to the regression lines. If the hypothetical values were known




with means zero we would have

3= 21/ 20,
Consistent estimators for the numerator and denaminator are ‘ijlyé and
'Tiyg - no% respeetively. There are variants, With certain assumptions
the Kummell line may be indicated in this way (Lindley, 1947, see. T.3).

II, The method of least squares is the commonest approach., The
usual idea has been to minimize a sum of squares of deviations of
observations from the fitted line., The problem has been to determine in
what direction should the deviations be measured.

Adcock (1878-79) and Pearson (1901) minimized sum of squares per=
pendicular to the line without attention to the ratio of error variances.
Roos (1937) however pointed out that this produces a solution which fails
to be invariant under change of scale. He considered that the direction
in which deviations are measured should depend only on the precisions of
the observations and be independent of the slope of the line, He therefore
proposed to use deviations at L5° to either coordinate axis when variates
are scaled so as to have equal precisions, But Lindley (1947, sec. 8.2)
pointed out that even this gives consistent estimates only under rather
Special conditions,

Kummell (1879) and Deming (1931~43)(assuming oy = 0) proposed to

{nimize

S = EL(_JE_- §l)2 5 (x2 " ;2)2 (6)
| n %2
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or, equivalently, a proportionate expression using only the ratio

A= 011/022, subject to the restriction (3). Kummell showed that a
solution is obtainable only if A\ be known and that it is equivalent to
minimizing the sum of squares of deviations perpendicular to the line when
the variables are scaled so as to have equal error variances, that is when
transformed to the form (1), He reached the well known solution of the
quadratic equation

(sll - xszz)B + (A= 2)s12 = 0 (1)

=l =2
where S11 = ,43(x1 - xl) , etc.

To fit curves and planes he proposed an approximate method which shows
interesting variation on usual procedure, uhen residuals are not lirear in
the parameters the classical least squares method begins by expressing the
residuals (before squaring) as the linear terms of a Taylor expansion in
adjustments to trial parameter values, Kummell first expresses S as a
Taylor expansion linear only in the deviations (xp - gp) and uses this to

' -3
LY
so=called weights which are usually functions of the parameters. The whole

elininate the § and obtain for the residuals (e.g.: x

expression S, with g thus eliminated, is then expressed as a Taylor expansion
in adjustments to trial parameter values, and with the 'weights' remaining as
functions of the parameters in subsequent differentiations. (Roos criticizes
laxity in his mathematical arguments.)

Demingt!s approximating procedure is more similar to the usual least
squares approximation but differs in that the expansion of the residuals
contains simultaneously terms both in (xp - §p) and in parameter adjustments.

It leads to 'weighting! of the observable residuwals similar to Kummell's
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formulation, but with the weights expressed as functions of the trial
parameter values and hence ;gentering differentiation as constants. In
classical procedure the parameter adjustments tend to zero as iteration
proceeds with convergence on the required estimates., Deming's expansion
differs in the material respect that the discrepancies (xp - 51) do not

tend to zero and cannot be made to do so without losing contact with the
observations which must remain as the anchor for computations. His book
repeatedly reiterates that the solutions obtained will differ from the true
ones only in squares of the residuals, but it evades enunciating the corollary
that since these same squares of residuals constitute the function on whose
ninimization the solution depends they are not negligible. When the fitted
relation is linear the procedure leads to one of the regression lines (albeit
with a modified estimate of the error variances). In this case it fails to
distinguish (as it appears to purport to do) between regression and the
functional relation, and the proposed weighting procedure is wasted effort,
When a curved relation is to be estimated it does allow that observations

in regions of very steep slope do not get the very high weights which
regression would in effect ascsign to them, But just what may be accomplished
secms not to have been threshed out. Recognition of the order of magnitude
of neglected terms suggests that bias may still be about as great as by any
simpler method; it suggests indeed that the method may be strictly appropriate
only when residuals are so small that almost any method of fitting will yield

a satisfactory result, (A similar comment was made by J. H. Smith, 1945.)




o

Lindley (1947) seeks a least squares solution by considering the squares
of residuals defined by the form in which the relation happens to be writtenj

in particular using (3) he writes the residuals as

! 1
(xl -A =B x2)

With assumptions 011/022 = ) and o), =0, he then notes that the variance
t
of these residuals is proportional to (\ + B 2) and states that this must
be introduced as a weight so that the function to be minimized is
' )
?(xl-A -sz)

1
A+ B 2

(8)

This produces Kummell's equatioq)but to imply that it is a weishted least
squares solution is, I think, misleading, lleights are introduced into the
least squares procedure to take account of variation in precision of the
cbservations. (I omit these here for simplicity. They, Lindley's Pk’ G
are easily added if required.) Here all the observations have equal weight,
and (A + Ble) is not a weight in the ordinary sense. Lindley pertinently
remarks that his procedure has the advantage "that the redundant 3 are never
mentioned", but he aoces not explain why they can be thus banished,

IIT. The maximum likelihood solution has been considered by Dent (1935),
Lindley (1947) and Kendall (1950, 195L). They begin by writing the likelihood,

assuming = Q, as

%12

-

j .(X2 = §2)2 . (xl - A' = B| 52)2

932 %11 |

~n/2 exp j- %

2

and treat §2i as parameters. WUith no further postulates Lindley and Kendall

(21)" (o)

conclude that all is not well with the resultant equations because they lead

to the ratio of estimates of G0t Oy being ﬁz -- an unacceptable result.
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Wwhile admitting the result to be unacceptable it is scarcely by itself
adequate reason for rejecting the method and they do not elucidate why this
result appears, Since the likelihood is formulated for 2n observations
indeterminance is not due, as has been suggested, to trying to estimate more
parameters than there are observations. ie shall see later that the trouble
is that, relative to distribution of the only deviations which are observable,
these two parameters enter as a single unit.

This formulation, with the ratio 0'11/0'22 known, is easily seen to be
equivalent to Kummell's least squares formulation. The unpleasant feature
lies in regarding §pi as parameters to be estimated, Neyman and Scott's (1947)
"incidental parameters®. The word "parameter® as used in statistics has not
yet been very specifically defined. Relative to the theory of maximum likeli-
hood it may be defined as a characteristic constant of a probability distribu-
tion. To specify a particular parameter we must be able to specify the
population of random variables of which it is a characteristic. That being
done it is at least theoretically possible to return again and again to re-
sample the specified population, thereby increasing the sample size from which
its characters may be estimated, But that is just what, in the problem before
us, cannot be dene. A basic feature of the problem is that we never know and
can never state that any two or more pairs of observations are drawn from the
same sub-population with a particular gli’ §2i5 they are never definable
as the characters of a specifiable population and we can never increase sample
sizes for their estimation as is required to demonstrate the optimum properties
of maximum likelihood estimators. Iurthermore we are not interested in the
§ pi individually, we are concerned only to estimate the line as a whole. The

Epi are essentially variables, not parameters at all, They may or may not
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be random variables, that is variables with an associated probability
distribution, depending on the procedure by which observations are selected.
If they are random variables the parameters of their distribution may become
parameters also of the overall distribution of the observable x and appro-

priate formulation is self evident (appendix 2). If the location of observa-

tions is chosen in a way which precludes assigning a probability distribution
to lg, to treat them as parameters may yet be inappropriate, and we should
seek some other method to eliminate them from the problem,

2. least squares formulation

The method of least squares seeks estimates of parameters which minimize

a sum of squares of residuals which are usually expressible as

Xy = Qi (20)

where X; are observations, and Qi are functions of the estimandsand known
constants, For the Gauss-Markoff theorem to be applicable, with consequent
nice statistical properties of the estimators, it is necessary (David and
Neymén, 1937) that,

(1) E(xi) = Oi

(ii) 6 be a linear function of the estimands

(iii) the relative weights of X, be known,

Little seems to be known about the precise statistical properties of estimators
when these conditions are not met. Conditions (i) and (iii) are invariably
assumed. Failure of (ii) creates no difficulty in principle for estimating
the parameters, beyond that the solution may have to be approached by itera-
tion; but estimators may no longer be unbiased, and reliability of approxima-
tions to their variances and covariances, based on linear approximations,

seens uncertain,
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then we have to deal with a relation between observations all of which
are subject to error we do not obtain a clean separation between observations
and estimands as at (10). We must deal with residuals which are mixed
functions of the two, for exampls from (1) or (2);

rEy, - A= By2 or y, cos B - Yo sin B = A,
This additional complication has been slurred over by writers who have en-
deavored to apply the principle of least squares to such situations.

The residuals of classical least squares, and relative to which the
principle was developed, are univariate quantities., The residuals with which
we have to deal are compounded of two variates, but once compounded in a de-
fined manner the compound becomes again a univariate quantity and should have
a univariate probability distribution. The only quantities on which inference
must be based are deviations from observed points to the fitted line; there
cre nswh Quantities. The hypothetical 3 or 7 , being irrelevant to the
problem, if they can be eliminated, the deviations must be defined by measure-
ment in some specified direction,

It seems natural to as:cume as a first requirement that the residuals
should be formulated so that E(r) = 0. That condition is satisfied for all
formulations which have been proposed when expectation is taken to imply
expectation over the bivariate distribution of ¥y and Yps O of Xy and xa’
in each sub=-population, But after noting that the residuals are essentially
univariate quantities it seems reasonable to consider their distribution about
the line as conditioned by the direction in which it has been decided to
measure them (¢f. app. 1). Suppose one may decide to measure the deviations
parallel to some arbitrary direction BBl, fiz« 2. The mean values of con-

ditional distributions formed by sectioning a bivariate distribution in that
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direction then lie on a diameter CC' which bisects all chords of the contour
ellipse which are parallel to BB'. The conditional expectations nf r are

then quantities CR whose magnitude depends on the distance of BB| from §1 f .
The net effect of minimizing a sum of squares of such deviations is to bias
the estimated line in the direction CC'. However such bias can be eliminated
if the deviations be measured in one, and only one, particular direction. If
the deviations be measured in a direction parallel to tangents to an equi-
frequency contour ellipse at its intersection with the functional line AA',

L
that is in the direction DD', fig. 2, the locus of expectations CC then

1
coincides with AA and the expectations of deviations (QR) are identically

gero independently of 51, 52. When deviations are so measured we may re-

gard them as normally distributed about the line éﬁl’ and thus, and only thus,

the incidental variables ; can be eliminated from the problem,

When transformed to our "y" model, figure 1, the condition is seen to
be when deviations for independent errors of equal variance are measured
perpendicular to the line. Furthermore the variance of such deviations is
immediately seen to be oi. In figure 2 the standard deviation is equal to
the length of the radius vector, TD", parallel to DD', for the ellipse (4);
but the expression for this length is not simple.

3. Maximum likelihood formulation

For simplicity consider the standardized "y" model, figure l. The
deviations to be considered are those perpendicular to the line. From any
text book of analytical geometry (or from elementary trigonometry) the
distance of a point from the line is

(yy - 4 - By,)(@ + 52)=1/2 (11)
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e have seen that these deviations are normally distributed with mean

zero and variance ci. The likelihood is therefore

- 2.
. ~ (y; - 4 - By,)
L= (2no§ n/2 exp | - —lg = 5 2 (12)
200 l1+B

It is maxinized when 3 (y = A = By,)? / (1 + B°) is ninimized. This is
Lindley's formulation but we now see that the factor (1 + B2) (or, more
generally, A + B'2) is introduced to evaluate the only deviation from whose
distribution the redundant 3 can be eliminated, It is not entered as a
weight; that it happens to be proportional to the variance of the marginal
distribution when the whole bivariate distribution is projected onto a
vertical, in which direction deviations are (yi -4 - Byé), is an incidental
circumstance of the bivariate normal distribution. Since the Kummell so-
lution can now be expressed as a maximum likelihood estimator not involving
"incidental parameters", it follows that it is asymptotically efficient.

For further work the equation of the functional line is better expressed
in the intercept form (2). In regression analysis the slope of a regression
is normally distributed only because values of the independent variable are
taken as given constants, Furthermore we cannot evaluvate a regression unless
these have some spread, that is ,;;(x - E)e cannot be zero, and the estimated
slope cannot approach infinity. In the problem here considered B may approach
infinity from either direction while the spread of X5 is still substantial
(depending on 022). A little consideration shows that the system is circularly
symmetric, therefore to obtain a statistic which may be symmetrically dis-
tributed and independent of B we should consider the angle of the estimated
line, rather than its slope whose distribution may be very skew and dependent

on B,
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Taking the parameters to be estimated as 8 and x, the log likelihood

is now

. n, 2_ 1 7 a2
InL = const. = In o 2:2- P (ylcos B - y,sin B &) (13)
0

To derive the estimators assume that Yys ¥, are measured from their means

=
so that > yp = 0,

%}-:l'=i-2-2(ylcosﬁ-yasinﬁ--<) ()
0

whence f( = Q,
QL 1 2 () 005 B =y, einp - <)y sinp +3, cosp)  (15)
5F 4
o
which is zero when

=y l 2 2 . A e A -
.23 (-2' (Yl Ll yz) sin 29 + ylyz ces 2‘3) 0

G
A 2 2 Y19
tan 28 = ——— T C (16)
D2 92
)yz - >'yl

which is equivalent to Kumell'!s soluvtion (7).
Further cdeductions are easier in terms of transformed variables obtained
by rotating to cocrdinate axes parallel and perpendicular to the theoretical

line. Define
u) =y, cos B -y, sinp (17)
U, =¥y sin B + Y, cos B
E(w,) = N cos B = 1M, sinp =« (Constant independently of i)

E(o,) = %y, sinp + My C0S B =T, say (18)
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U is an alternative variable to 7].or 72 and represents the distance of

hypothet.cal points as measured along the line, ST in figure 1. We then have

S - )2
1nL = const, = g in o - u12 (29)
20
dlnl _ _ n +~2(“1"")2
Vo 20 20
= 0 when & 82 (ul - .<)2/n (20)

Since dul/aﬁ = -w,, and u, is a constant relative to sach conditional

1
distribution along a fixed line DD , the elements of the information matrix are

<9
E(?EEI:)Z e - blnL> DlnL)=_)21nLn./Ju2
o & F L o«/\op WIP
92
E°(m)2'a‘2iné‘r'“i’zu‘2' T
o/ 28 4 EWE%%T"
g /2Ly’ _ _gdilnl _ n (1)
(_5?) ()(0)2 20

where Eo implies conditional expectation given u,. However we have here the
peculiarity that as p is varied there is a shift in the directions along which
the deviations are measured. On more accurately evaluating var (a) it will
turn out, as we might intuitively expect, that a better approximation to the
variance-covariance matrix is given by replacing v, by U wherever it occurs

in (21). A peculiar feature of this formulation is that, allowing u, to ve a

.\2 iy
D1nL - Dl .

-E Sy = =5 as required;
0P 0

2 B 2
but the alternative form E(%%%E) #till remains as /’Uz ; Lo
e

variable, E(“2i) = U, and duz/aﬁ = uy, We obtain

The product
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. 2
term QEE& . ¢inL on the other hand has the same expectation as -.? il .
s OB O 0B

Full theoretical implication of that inconsistency eludes me; it is
evidently associated with the condition that the direction in which the
postulated sampling distribution of observations is defined "wobbles"

with errors in estimating its parameters. We shall see later that the
condition under which the indicated variances are approached is not n—-w,
but that the ratio (02/ second moment of U) -0,

The asymptotic variance-covariance matrix is therefore indicated to be

« B 02
211',32 S} o—
o = s 2
n A A
1l 0
= 22
| N (22)
20'2
_, O

where U = 2 U/, A = (U - 0)°.

aAlternative formulation of the likelihood, and of the associated
variance-covariance matrix of the estimators, if estimates of individual
Ui may be deemed relevant, is indicated in appendix 1. The likelihood
formulation if U is also a normally distributed random variable is stated

in appendix 2,




- 16 -

L. Summary of additional results

A A
The distribution of B is symmetric. By approximating (B-p) by a power
series of variables, whose joint moment generating function can be easily

obtained, it has been ascertained that for finite samples the variance of

g is
& Lo b 80 2 _ -4
K-(1+w)+A @w + W) + 3—A§-(~2+27w+h8w +160) + 0(a™)
where w = (n = 1)¢ /A. (al)

The parameter of kurtosis is

2
Bé = 20 (2 +w - QEE-) +0 A'Q) (a2)
A 14w

r - A _ A

w = (y; = ¥p) cos B - (v, - ¥,) sin B
then

B(sud) = | n2ew + L (Q-2w=u) = (L1416w9%° 43w3) =~ 0(n=3) |.
2

n-1 (n=1) (a3)

Since (n-2) will usually be large relative to w we may for most practical
purposes suppose (n-2) "degrees of freedom", If then we accept as estimator
of the error variance

¥ e 28 /) (aly)

its mean square error is

2)2 , 20 o “(uw)

Bl G + 0™ (a5)
n-2 (n-2)

If

W, = () sin B + (y,7,) cos B
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a satisfactory estimator for the variance of § is

var®) = 4l + (n-1)Q) (a6)
ki (a7)
here 4 = S = a
vhere (nnz)zug-nj:zl-
A - 0'2 1 O‘h (9 + 22 8 2 +0 g (38)
Blwr(e)) = = (L +w +;1-_—l-)+F W - B°) "

which compares reasonably favorably with the value required for an unbiased
estimator as indicated by (al).
An approximate fiducial interval for § is given by
2
2 htZ S'ISZ - SC

sin™28 = . (a9)
2 et
n-2 (Sz-Sl) + hSc

A
where 8 = 3 = B

=

'z

8,72 0y ~F) 0, - F)
t = Student's t for the required fiducial probability and (n - 2) degrees
of freedom.
The error in this interval seems likely to be negligible for the kind of data
to which such lines are usually fitted, say for fiducial intervals of less

than n/L.
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I have been unable to obtain the exact sampling distribution of B under

the model so far assumed. But if we add the postulate that U is normally

distributed about zero with variance of, then, with notation as follows

Q
a

1 °2(“1) ’ °§

2 2 2 2
o, = 0 (u2) % * %

2 2 2 .2
C Gl cos 0 + o, sin @
n is even = 2k + 44

A
the probability density function of @ = (B - B) is

_23m) (%) T 5 6\t
£(9) = n“ s 2 () ) @) (210)

Proof of these statements, and the appendices noted above, will be

submitted in a later report.,
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